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Steady and oscillatory convection in rigid vertical cylinders heated from below is 
studied by means of a numerical solution of the three-dimensional, time-dependent 
Boussinesq equations. Both adiabatic and ideal conducting sidewalls are considered. 
The effect of the geometry of the container on the onset of convective instability and 
the structure and symmetry of the flow are analysed and compared with the results 
of linear stability theories. The nonlinear evolution and stability of convective flows 
at Rayleigh numbers beyond the critical number for the onset of convective motion 
are investigated for Prandtl numbers of 0.02 to 6.7. The limits of stable axisymmetric 
solutions are an important finding of this study. The onset and the frequency of 
oscillatory instability are calculated for the small Prandtl number 0.02 and 
compared with experimental data. Calculated stream patterns and velocity profiles 
illustrate the three-dimensional structure of steady convection and the time- 
dependent behaviour of oscillatory flows. 

1. Introduction 
In recent years there has been an increasing interest in improving the quality of 

bulk single-crystal semiconductor materials required by the micro-electronics 
industry. The performance of electronic devices often depends strongly on the 
compositional homogeneity of the substrates upon which they are fabricated. 

It has been well known for about twenty years that convective motion in the melt 
plays an important role in determining heat and mass transfer during solidification 
processes (Miiller 1988). Hence, a detailed understanding of the fluid flow in crystal 
growth configurations has become important. 

Since the experiments of Be'nard (1900) the analysis of buoyancy-driven flows in 
fluid layers heated from below (Rayleigh-Be'nard convection) has been the aim of 
numerous theoretical and experimental studies. Such fundamental aspects as the 
onset of convective instability, transitions to periodic and non-periodic motions, and 
the influence of boundary and initial conditions have been investigated. More 
recently attention has been focused on the effect of rigid lateral boundaries on the 
stability and form of the convective motion; in particular, rectangular and 
cylindrical geometries have been investigated. A wide range of values for the physical 
parameters has been studied in parallelepipeds and, mostly flat, cylindrical 
containers. 

t Present address: Fraunhofer-Institut fur Angewandte Festkorperphysik, EckerstraDe 4, 
D-7800 Freiburg, FRG. 
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Only a few results can be applied to the most important vertical crystal growth 
techniques, such as the Czochralski, vertical Bridgman or zone-melting techniques. 
Therefore the main purpose of the present numerical analysis is to investigate 
convection in vertical cylinders with large or moderate aspect ratios (a = 
height/diameter), where lateral confinement has an important influence. For 
geometries with imposed temperature fields that are purely vertical and heated from 
below, steady convection begins a t  a critical temperature difference, measured in 
terms of the Rayleigh number, beyond which the static fluid is unstable to small- 
amplitude disturbances of the velocity, pressure and temperature fields. These 
critical Rayleigh numbers (Rc, s) are determined as the eigenvalues for marginal 
stability in an analysis constructed from the Boussinesq equations (Q 2) linearized 
about the static state (Chandrasekhar 1961). Critical Rayleigh numbers for the onset 
of convection in vertical cylinders with rigid walls have previously been calculated 
by Charlson & Sani (1971), Gershuni & Zhukhovitskii (1976) and Buell & Catton 
(1983). In the above studies i t  is further predicted that convection in rigid cylinders 
sets in as an axisymmetric mode only for flat containers, whereas for aspect ratios 
greater one convection is always non-axisymmetric. For non-rigid or combinations 
of rigid and non-rigid walls the linear stability problem can be solved analytically by 
the separation of variables as shown by Zierep (1963), Catton & Edwards (1967) and 
Rosenblat (1982). The exact solutions are used for testing the accuracy of the 
numerical procedure developed in this work (53.2). 

The calculation of fluid motions that evolve for Rayleigh numbers beyond the 
critical values (Rc, s) requires nonlinear analysis, either by perturbation methods 
(Schluter, Lortz & Busse 1965) or by numerical solution of the full Boussinesq 
equations. Perturbation techniques are valid only in cases where the Rayleigh 
numbers are still close to the critical value. Numerical calculations have the potential 
for determining fluid flows over a much wider range of Rayleigh numbers and for 
describing the nonlinear evolution of the flow structure with changes in the geometry 
of the cavity, the Prandtl number or the thermal boundary conditions. This paper 
describes such a three-dimensional numerical study of convection in rigid vertical 
cylindrical enclosures ($4, 5 ) .  

Beyond various aspects of fundamental interest, investigations of the nonlinear 
evolution of convection, and especially of stability boundaries and changes in the 
symmetry of the flow, are very important for the design and optimization of crystal 
growth apparatus. 

2. Physical and mathematical model 
We consider a fluid layer in a vertical cylindrical enclosure of height h and 

diameter d.  A Newtonian fluid with constant kinematic viscosity v and thermal 
diffusivity K ,  and whose density p varies linearly with temperature is assumed 
(Boussinesq approximation). The two ends of the cylinder are taken to be isothermal 
with the lower one held at temperature Tb, which is greater than the temperature T, 
of the upper surface. A cylindrical coordinate system r = ( r ,  19, z )  with its origin a t  the 
centre of the lower boundary is employed. The equations that govern the temperature 
T(r ,  t ) ,  pressure p ( r ,  t )  and velocity o(r,  t )  = (vr, vg, vz) fields are the conservation 
equations for mass (continuity equation), momentum (Navier-Stokes equations) and 
energy, called the Boussinesq equations (Chandrasekhar 1961). By scaling length 
with the height h of the cylinder, velocity with K/h, pressure with pK2/h2, time with 
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h2/K and temperature T as ( T -  T,)/(T, - T,) the Boussinesq equations can be written 

( 1 4  
in dimensionless form as 

( 1 b )  

( 1 c )  

v . u = o ,  

a u / a t +  u - V U  = -Vp+PV2u+RPTe,, 

aT/at + tr . V T  = VT, 

where e, is the unit vector in the vertical upward direction. 
The dimensionless Rayleigh number R and Prandtl number P in ( 1 )  are defined as 

R = g a h 3 ( q - T a ) / u ~ ,  (2) 

P = V / K ,  (3)  
where a and g are the coefficient of thermal expansion and the acceleration due to 
gravity, respectively. 

At all container walls either the no-slip or the shear-free velocity boundary 
condition is prescribed. The cylindrical sidewall is chosen to be adiabatic or ideal 
conducting, i.e. the temperature gradient normal to the wall is set equal to zero or 
the temperature of the sidewall varies linearly from to T,. For either set of 
boundary conditions the entire set has the static solution 

u = 0 ,  T ( z )  = 1 - 2 ,  p =P,+RP(z-$z*) ,  (4) 

from which the convective motions branch. We shall represent these flows by the - 

Nusselt number 

N =  g l r [ : r (  7c -gl z-0,l )drdO, 
(5)  

where a = h / d  is the aspect ratio. The temperature gradient aT/az is evaluated either 
along the top end ( z  = 1 )  or the bottom end ( z  = 0) of the cylinder. 

3. Numerical solution 
3.1. Numerical method 

To render ( 1 )  in a format suitable for computation, they are expressed in finite- 
difference form on a three-dimensional cylindrical mesh. The region in which the 
computations are to be performed is divided into a set of small cells having edge 
length Ar, PA8 and Az. An appropriately staggered mesh (Harlow & Welch 1965; 
Williams 1969) is used for the solution of the Navier-Stokes equations. In each cell 
the velocity components are defined at the cell faces while the values of pressure and 
temperature apply to the centre of the cell (figure 1 ) .  

The numerical computations are performed by an implicit finite-difference method 
using first-order forward differences for the derivatives in time and second-order 
central differences for the spatial derivatives. For a velocity field with zero 
divergence the nonlinear and the diffusive terms in ( 1 )  can be written in an 
equivalent form : 

v2u = - v x (V x u) ,  ( 6 4  

u * (VU) = g u  - (Vu)+V(u * u ) ] ,  

u * (VT) = +[u - (VT) +V(UT)] .  

As proposed by Williams (1969) and Piacsek & Williams (1970) for the conservation 
properties of numerical schemes, the finite-difference analogue of the right-hand side 
of (6) is used. 



562 G . Neumann 

FIGURE 1.  Computational mesh. Position of the staggered mesh points within one cell: x , 
pressure and temperature; A, azimuthal, 0 ,  radial, and ., vertical velocity points. 

A time-dependent solution is obtained as follows. At time t = 0 we start with the 
initial conditions for the velocity and temperature fields. In the first stage we 
advance the velocity and temperature components from the previous state at t = t ,  
to the new state at  time t = t ,  + At. The implicitly coupled finite-difference equations 
are solved iteratively by the Alternating-Direction-Implicit method of Douglas & 
Gunn (1964). This method leads to the solution of tridiagonal and cyclic-tridiagonal 
matrices which can easily be solved by Gauss elimination. However, this procedure 
does not lead to a velocity field with zero divergence, i.e. the continuity equation (1 a) 
is not fulfilled. Thus, in a second stage, the velocity and pressure components in each 
cell have to be corrected in such a way that zero divergence is approached. After this 
one advances to the next time step ( t  = t,+l). 

The so-called SIMPLE algorithm of Patankar (1980) is applied for the correction of 
the velocity and pressure components. Since zero divergence cannot be reached after 
one correction step, the procedure has to be performed iteratively until all cells have 
attained a suitably small divergence. The values for the correction of the pressure 
and velocity fields are calculated by solving a second-order Poisson equation for the 
pressure at  each correction step. 

The whole numerical algorithm is written serially as well as in vectorized form for 
the calculation on CRAY-1 computers. Run times are presented for the example of 
a three-dimensional oscillatory solution (5 5 ) .  Additionally, an axisymmetric version 
of the algorithm is available. For more details on the numerical scheme see Neumann 
(1986). 

3.2. Test of the numerical scheme 
Analytical solutions obtained €or vertical cylindrical containers with free surfaces 
(see Rosenblat 1982) are compared with the corresponding numerical ones in order 
to test the accuracy of the numerical method. In order to limit computer costs only 
azisymmetric solutions (azimuthal wavenumber M = 0, i.e. flows being purely 
meridional and independent of the azimuth 8) are presented in this section. 
Analytical solutions derived by Rosenblat (1982) for the onset of convection in 
cylinders with the shear-free velocity boundary conditiont and adiabatic sidewalls 

t It should be noted that for the case of axisymmetric solutions (with v, = 0) presented in this 
section, the two kinds of boundary conditions at the curved cylinder wall, shear-free and zero 
tangential vorticity, are identical. 
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FIQURE 2. Growth exponents cr of axisymmetric convection in a shear-free cylinder in dependence 
on the spatial and temporal discretization for a = 0.2899, adiabatic sidewall, R = 1000 and P = 1. 
Comparison with the exact analytical value (equation (7) ) .  L and N denote the number of mesh 
points in the radial and vertical directions. 

RC. s R C 3 S  

Aspect ratio, a analytical numerical, a+O Error 

0.2899 657.51 659 0.2 Yo 
0.21 735.41 737 0.2 Yo 

TABLE 1. Comparison of critical Rayleigh numbers for the onset of axisymmetric convection in 
shear-free cylinders obtained by extrapolation with the exact analytical values 

are taken for the comparison with the numerical computations. As is known from 
linear stability analysis an exponential time law u = u,, exp (at) is found for the 
growth rates of convective modes branching from the static state (equation (4)) as 
long as the amplitudes remain small. Growth rates a of axisymmetric solutions 
(wavenumber m = 0) can easily be derived as 

In agreement with the nomenclature of Rosenblat, n = 1 ,2 ,3 ,  . . . is associated with 
the number of zeros of the solution in the x-direction, and is called the vertical 
wavenumber and j = 1 , 2 , 3 , .  . . is the radial wavenumber ; A, is the j t h  positive root 
determined by the condition J,(h/Ba) = 0, J1 is the usual Bessel function of order 1,  
a = h/d  is the aspect ratio and Ro,l,n the critical Rayleigh number for the 
eigensolution (mode) m = O , j ,  n obtained by Rosenblat. 

In agreement with theory an exponential law for the growth of small-amplitude 
disturbances is found in the numerical simulations. Dependences of the growth 
rates on the mesh size and time step are shown in figure 2. It can be seen that the 
values for u obtained numerically converge to the exact analytical value with 
decreasing time step and mesh size, i.e. the finite-difference scheme is consistent with 
the differential formulation. 

Stability boundaries, e.g. critical Rayleigh numbers for the onset of convection 
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FIGURE 3. Time evolution of the Nusselt number for a shear-free cylinder with a = 0.2899 and 
an adiabatic sidewall ; R = 1000 ; P = 1. 
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FIGURE 4. (a) Streamlines and ( b )  isotherms of axisymmetric convection in a shear-free cylinder 
for a = 0.2899, adiabatic sidewall, R = 700 and P = 1. 

(Re,*), cannot be directly calculated by means of any numerical scheme. However, 
the present numerical procedure enables the approximate determination of stability 
boundaries, as follows. Growth rates u of small-amplitude convective disturbances 
are calculated for different values of the Rayleigh number. The critical Rayleigh 
number for this type of instability is evaluated by extrapolation to u = 0. The 
accuracy of this method is tested by comparison with the analytical result of 
Rosenblat (1982). Good agreement is obtained, as shown in table 1.  

For calculating the amplitude of the convective motion a t  supercritical Rayleigh 
numbers the numerical procedure is repeated for a sufficient number of time 
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FIGURE 5. Nusselt number versus Rayleigh number for axisymmetric convection in a shear-free 
cylinder for a = 0.2899, adiabatic sidewall and P = 1. Comparison between different computational 
methods. 

increments to converge to a steady state. In  figure 3 the development of buoyancy 
convection in a cylinder with shear-free walls is represented by the dimensionless 
Nusselt number. At  t = 0 the calculation starts with the static solution (equation 
(4)). Small-amplitude temperature disturbances (5”’ < 0.01) are added to the static 
state in order to enhance the convective motion. The calculation is stopped when the 
relative change of the Nusselt number between two time steps is smaller than 
The stream pattern and temperature distribution of the converged solution is plotted 
in figure 4. The axisymmetric convection pattern consists of one toroidal roll, in 
agreement with the prediction of the linear theory of Rosenblat for the aspect ratio 
a = 0.2899-f. Two convective toroids (mode m = 0,j = 2, n = 1) are predicted by the 
linear theory for the larger aspect ratio a = 0.21. This is also found in the numerical 
calculation. For the single-roll solution a comparison of the results of different 
numerical methods is shown in figure 5 by a plot of the Nusselt number versus the 
Rayleigh number. Good agreement with the numerical results of Jones, Moore & 
Weiss (1976) and P. A. Sackinger (1984, private communication) is obtained. 

4. Steady convective regimes 
The aim of the following sections is to study the nonlinear evolution of steady 

convective regimes in cylindrical containers with rigid walls. The dependence of the 
convective behaviour on the Rayleigh and Prandtl number and on the boundary and 
initial conditions is also investigated. Convective flow patterns are calculated for two 
typical aspect ratios: a = 0.5 and a = 1, which are below and above the critical 
aspect ratio ac, 3D for the transition from axisymmetric to non-axisymmetric 

t According to Rosenblat (1982) this aspect ratio corresponds to the minimum critical Rayleigh 
number R,,,(a) for the axisymmetric m = 0,j = 1,n = 1 mode (one toroidal roll). 
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~~ ~~ ~ 

Critical Rayleigh numbers, Rc,s 

Numerical Charlson & Sani Gershuni & Zhukhovitskii Buell & Catton 
Aspect ratio, a a + O  (1971) (1976) ( 1983) 

0.5 2.22 x 1 0 3  2.26 x 103 2.25 x 1 0 3  2.26 x lo3 
1 3.61 x 103 4.5 x 1 0 3  3.9 x 103 3.8 x 103 

TABLE 2. Comparison of critical Rayleigh numbers for the onset of convection in rigid cylinders 
with adiabatic sidewalls obtained by extrapolation with the results of linear stability theories 

FIGURE 6(a ,  b ) .  For caption see facing page. 

convection predicted by the linear stability theories for the no-slip boundary 
condition (see $1) .  According to the investigations ofs3.2 a time step At = 0.001 and 
grids with approximately 20 mesh points in the r-,  6- and z-directions are applied for 
the numerical simulations. 

4.1. Onset of convection 
Critical Rayleigh numbers Revs for the onset of (time-independent) convection in 
rigid cylinders with adiabatic walls are calculated by the extrapolation method 
described in $3.2. In agreement with linear stability theory, convection sets in with 
an axisymmetric toroid (mode m = 0) for a = 0.5 and with a non-axisymmetric 
single-roll (mode m = 1) for a = 1.  As shown in table 2 the critical Rayleigh numbers 
obtained in this study are also in good agreement with theory. For the aspect ratio 
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FIGURE 6. Right side: Principle sketch of initial temperature disturbances (T) near the horizontal 
midplane (z = 0.5) ; $, T > 0 (‘hot ’); and 0,  T < 0 (‘cold’). Left side: Corresponding steady 
convection patterns represented by profiles of the vertical velocity component in the horizontal 
midplane for a = 0.5, adiabatic sidewall, R = 2800 and P = 6.7. 

a = 1 the numerical calculation seems to confirm the more recent theories of 
Gershuni & Zhukhovitskii (1976) and Buell & Catton (1983). 

4.2. Dependence of the convective flow on the initial conditions 
For the calculation of supercritical convection the numerical procedure is started 
from the static state (compare Q 3.2). Small-amplitude temperature disturbances (T) 
of various symmetries are added in order to enhance different types of convective 
flow. Four different types of steady convective flow were found for the supercritical 
Rayleigh number R = 2800, the aspect ratio a = 0.5, adiabatic sidewall and P = 6.7, 
corresponding to water. The different flows are represented in figure 6 by a plot of the 
vertical velocity in the horizontal midplane. The corresponding initial temperature 
disturbances are sketched on the right-hand side of figure 6. Two equivalent 
axisymmetric solutions were found, one with upflow and one with downflow in the 
centre of the container. As pointed out by Liang, Vidal & Acrivos (1969) the system 
of equations (1 )  and boundary conditions is invariant under the transformation 

( z , v z , F ) + ( l - z ,  -Uz, -F),  

which explains the existence of both downflow and upflow solutions. The Nusselt 
numbers and flow velocities of the axisymmetric solution are in good agreement with 
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0.4 

FIQURE 7. Profile of the vertical velocity component and corresponding isotaches in the 
horizontal midplane (z  = 0.5) for a = 1, adiabatic sidewall, R = 17500 and P = 6.7. 

two-dimensional calculations of Liang et al. (1969) and Yamaguchi, Chang & Brown 
(1984). These two types of convection can also be established experimentally, as 
demonstrated by Miiller, Neumann & Weber (1984), who obtained upflow for 
sidewalls with low thermal conductivity by heating the fluid from below, and 
downflow by cooling it from above. The non-axisymmetric flow consists of two 
parallel roll cells with upflow (figure 6 c )  or downflow (figure 6d) in the centre. These 
different types of convection are also predicted by the linear stability theories (e.g. 
Charlson & Sani 1971), denoted by the mode number m = 0 for the axisymmetric and 
m = 2 for the non-axisymmetric two-roll solution. As already shown in $4.1 
convection sets in with the axisymmetric mode m = 0 for the aspect ratio a = 0.5. At 
the supercritical Rayleigh number of 2800 the linear stability curves of both the 
m = 0 and the m = 2 modes are exceeded, which can explain our numerical predic- 
tions of convective behaviour. Since the ordering of these linear stability curves does 
not change in the vicinity of the aspect ratio a = 0.5, the above results should not be 
very sensitive to aspect ratio. 

For the aspect ratio a = 1 only one stable solution is found, consisting of a single 
non-axisymmetric roll cell. Different types of temperature disturbances, including 
random temperature distributions, were applied. The only stable solution cor- 
responds to the mode m = 1 predicted by the linear stability theories for aspect ratios 
a > 0.58+0.03 (adiabatic sidewall) or a > 0.72 kO.07 (ideal conducting sidewall). As 
shown in the plot of the vertical velocity profile in figure 7 the fluid is ascending at 
one side and descending at  the other side of the cylindrical container. With increasing 
Rayleigh number, i.e. increasing convective momentum transport, the roll becomes 
more inclined and small counter-rotating eddies arise. This is demonstrated in fig- 
ure 8 by a plot of the stream pattern in the symmetry plane 0 = 0, R which is 
perpendicular to the axis of the roll. The orientation of the roll in the 0 = 0, R plane 
is given by the initial temperature distribution. The plot of the stream pattern in the 
plane 0 = in, ix shows that a secondary flow consisting of four symmetric rolls is 
superimposed. As demonstrated in figure 11 the amplitude of the secondary flow 
(curve d )  is much smaller than that of the fundamental single-roll mode (curve c ) .  It 
can be further shown that radial temperature differences aligned with the single-roll 
mode give rise to the above secondary flow (Neumann 1986). Such a stream pattern 
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FIQURE 8. Stream pattern in two perpendicular axial sections (a)  B = 0, R and ( b )  8 = i ~ ,  $I for 
a = 1, adiabatic sidewall, R = 5 x lo4 and P = 6.7 (H,O). Comparison of the numerical results 
with experimental flow patterns obtained by the light cut technique (Muller et al. 1984). 

was also obtained in the numerical studies of Crespo et al. (1987) and can be observed 
in the experimental results of Miiller et al. (1984) as shown in figure 8. 

4.3. Flow transitions at supercritical Rayleigh numbers 
As observed experimentally (Miiller et al. 1984) a transition from axisymmetric to 
three-dimensional convection should evolve for low aspect ratios when the Rayleigh 
number exceeds a critical value The critical Rayleigh number is 
determined by calculating the growth rates r(R) of three-dimensional disturbances 
(compare $3.2). For the aspect ratio a = 0.5, adiabatic sidewall, and Prandtl number 
P = 0.02, a critical value of = 2525 is obtained by the present extrapolation 
method. If R exceeds this critical number the axisymmetric solution (mode m = 0) 
is unstable and bifurcates to the stable non-axisymmetric solution consisting of two 
parallel roll cells (mode m = 2). It should be noted that this bifurcation consists of 
a direct (not oscillatory) transition from steady axisymmetric to steady non- 
axisymmetric convection. As already stated in $4.2 such behaviour should be 
relatively insensitive to aspect ratio. The predicted flow pattern, consisting of two 
parallel roll cells, has been observed experimentally in the Rayleigh-BBnard 
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FIQURE 9. Bifurcation from steady axisymmetric (mode m = 0) to steady non-axisymmetric (mode 
m = 2) convection represented by a plot of the Nusselt number versus the Rayleigh number for 
P = 0.02, a = 0.5 and an adiabatic sidewall. Beyond the critical Rayleigh number R,,,, = 2525 
the axisymmetric solution is unstable to three-dimensional disturbances. 
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FIQURE 10. Isotherms in the axial section t9 = 0, R of a rigid cylinder with a = 1. (a) R = 6000, an 
adiabatic sidewall and three different Prandtl numbers are assumed. : P = 6.7 (-), P = 1 
(____-__) and P = 0.02 ( - . - . -a-  ). ( b )  R = 10000, an ideal conducting sidewall and P = 0.7 are 
assumed, 

experiments of Fauve & Libchaber (1984) for the low-Prandtl-number fluid mercury 
(P = 0.03). 

The bifurcation to the non-axisymmetric solution is shown in figure 9 by a plot of 
N versus R .  For the same aspect ratio (a  = 0.5) but using a Prandtl number P = 1, 
a critical Rayleigh number = 4100 is obtained. 

For the aspect ratio a = 1 (mode m = 1, see figures 7 , 8 )  no flow transition is found 
within the investigated range of R(R < 5 x lo4). 
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FIQURE 11. Vertical velocity profiles computed in this study for a cylinder with a = 1 and P = 6.7 
and by K. R. Kirchartz (1984, private communication) for a cube and P = 0.71. Ideal conducting 
walls and R = loo00 are assumed for both geometries. Cylinder (-): w, versus r at z = 0.5, 
8 = 0, n (curve c )  and at z = 0.75,B = in, in (curve d). Cube with length 0 Q 2 Q 1, width 0 < y < 1 
and height 0 < z < 1 (----): w, versus x at y = 0.5, z = 0.5 (curve a) and w, versus y a t  x = 0.5, 
z = 0.75 (curve b) .  

4.4. Dependence of the convective f i w  on the Prandtl number and the thermal 
boundary conditions 

The dependence of the symmetry and structure of the flow on the Prandtl number 
and the thermal boundary condition is investigated for the aspect ratio a = 1.  In  the 
range 0.02 < P < 6.7 and for the two cases of adiabatic and ideal conducting 
sidewalls, qualitatively similar flow pattern are obtained. For both cases the solution 
consists of a non-axisymmetric basic roll cell with a small-amplitude secondary flow 
(see $4.2) superimposed. The qualitative agreement is demonstrated by a plot of the 
temperature field in the 8 = 0,n symmetry plane (figure 10). The isotherms are found 
to be flatter for P = 0.02 compared with P = 1 and 6.7, which can be attributed to 
the high thermal conductivity of small-Prandtl-number fluids. The temperature and 
velocity fields obtained for P = 1 and 6.7 are almost the same. This behaviour is in 
agreement with theoretical results of Clever & Busse (1981), who show that 
convective flow in the case of moderate R is nearly independent of the Prandtl 
number for P 2 1. 

4.5. Dependence of the convective flow on the geometry of the container 
The influence of container geometry on the flow has been studied by comparing flow 
patterns in cylindrical containers with those obtained for cubic boxes (Kirchartz & 
Oertel 1988). Figure 11 shows a comparison of vertical velocity profiles in a cylinder 
of aspect ratio a = 1 with the corresponding profiles computed for a cube. The 
amplitude of the fundamental single-roll mode with upflow at one side of the 
container and downflow at the other side (compare figure 8a)  is represented by 
curves (a)  and ( c ) ,  whereas the secondary flow (compare figure 8b)  is represented by 
curves ( 6 )  and (d ) .  The configuration and amplitude of the flow velocity are quite 
similar in containers with circular and square cross-sections. 
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FIGURE 12. Time evolution of a computed temperature difference ST = T(r  = l , B  = 0, z = 
0.5) - T(r = l , B  = x ,  z = 0.5) and corresponding power spectra at P = 0.02, a = 0.5, an adiabatic 
sidewall and various Rayleigh numbers: (a )  R = 4000; ( b )  R = 5000; ( c )  R = 6000; (d) R = 8000. 

5. Time-dependent convection 
Transitions from steady to time-dependent convection are studied for the Prandtl 

number 0.02, which corresponds to most of the liquid metals (e.g. Ga) of current 
interest for bulk semiconductor crystal growth. The critical Rayleigh number Rc, for 
the onset of oscillatory instability is determined indirectly by nonlinear time- 
dependent calculations. Typically for Rayleigh-BBnard configurations the steady 
solution becomes unstable with respect to time-periodic disturbances if the Rayleigh 
number exceeds a critical number. Growth exponents 2 = u + i w  of time-dependent 
disturbances are computed for the two-roll solution (mode m = 2, see $4.3) obtained 
for the aspect ratio a = 0.5, P = 0.02 and R > 2525. Round-off errors of the 
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FIGURE 13. Isotaches of the vertical velocity component in the horizontal midplane during one 
oscillation period for R = 8o00, P = 0.02 and a = 0.5. Times are denoted by (a-h) in the plot of ST 
versus t. Upflow (v, 3 0) is represented by solid lines and downflow (v, < 0) by broken ones. 

19-2 



574 G . Neumann 

Frequency f?". Dimensionless frequency 
Author Fluid P R (Hz) fi = fFrn/(K/h2)  

This work, - 0.02 5000 - 0.9 

Weber (1988), Ga 0.02 8000 0.09 2 .o 

Fauve & Hg 0.03 7500 z 0.1 % 2  

1.2 
1.8 

- numerical - 0.02 6000 
0.02 8000 - 

experimental 

Libchaber (1984), 
experimental 

TABLE 3. Oscillation frequencies of time-dependent thermal convection in vertical cylinders of 
aspect ratio a = 0.5 
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FIQURE 14. Time evolution of a computed temperature difference ST = T(r = 0.5,8 = 0, 
z = 0.5) - T ( r  = 0.5,O = n, z = 0.5) and the corresponding power spectrum for R = 16000, P = 0.02, 
a = 1 and an adiabatic sidewall. 

numerical simulation are sufficient to initiate the oscillatory instability. Since the 
oscillatory disturbances require a finite time to develop, a quasi-steady state can be 
calculated before the oscillation sets in. An example of the evolution of time- 
dependent disturbances branching from the quasi-steady state mode (m = 2) is 
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I 

0.5 0 0.5 $X 

0.5 0 0.5 

0.5 r 0 0.5 
(6 = X) (6 = 0) 

FIQURE 15. Instantaneous streamlines projected into the symmetry plane 8 = 0 ,  II of the 
unperturbed steady solution (compare figures 7,8)  and isotaches of the vertical velocity component 
in the horizontal midplane (z = 0.5) for R = 16000, P = 0.02 and a = 1. (a)  t = 4.5; (b )  t = 6.7; 
( e )  t = 8.5 (a, b, e shown on figure 14). 

shown in figure 12 ( b ) .  The oscillation shown in figure 12 ( b )  grows exponentially with 
(T = 0.29. Decreasing the Rayleigh number to R = 4000 (figure 12a) damps the 
oscillation to u = -0.36. The critical Rayleigh number can be calculated 
approximately by linear interpolation to u = 0, resulting in Re,t = 4550 for the 
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transition from non-axisymmetric steady state (mode m = 2) to the time-dependent 
solution for a = 0.5, P = 0.02 and an adiabatic sidewall. 

For R = 6000 (figure 12c) a second oscillatory mode of frequency f2 close to the 
fundamental frequency fi appears. The change of the spatial structure of the time- 
dependent flow field can be seen in a representation of the velocity distributions 
during one oscillation (figure 13) and consists of only slight deformations. This low- 
Prandtl-number solution is completely different from oscillatory convection observed 
in gases with P x 1 (Mitchell & Quinn 1966). Oscillations in gases consist of rotations 
(e.g. the symmetry plane of the two-roll mode) around the axis of the cylinder. 

At a Rayleigh number of 8000 (figure 124 ,  oscillations of lower frequency are 
superimposed and the behaviour becomes non-periodic. The fundamental frequency 
fl is compared with the results of experimental investigations in table 3, giving a 
good agreement between the numerical calculations and the temperature measure- 
ments. 

For the aspect ratio a = 1 (mode m = 1) time-dependent convection sets in with 
strongly non-harmonic temperature fluctuations (figure 14). The fundamental 
frequency of this oscillatory flow is relatively low (compare figures 12 and 14). The 
critical Rayleigh number Rc,t = 1.5 x lo4 is obtained for a = 1, P = 0.02 and an 
adiabatic sidewall. In  figure 15 the flow pattern is shown at three different times 
during one cycle of the periodic fluctuation (denoted by a, b and c in figure 14). Again 
the structure of the flow does not change substantially during the oscillation. For a 
CRAY-1 computer a run-time of 5800 CPU-seconds was necessary for the calculation 
of the two periods of oscillation shown in figure 14. A time step of 0.001 was used, 
corresponding to a typical vplue of about t CPU-second per time step for a numerical 
grid with 6912 mesh points (i.e. 16 radial, 18 azimuthal, and 24 vertical mesh points). 
The occurrence of oscillations very similar to the above numerical predictions has 
also been observed in crystal growth experiments (Kyr 1978). The measured 
frequency offi x 0.15 (f fim w 0.025 Hz) is also in good agreement with the numerical 
value offl = 0.18. 

6. Discussion 
Buoyancy-driven convection in vertical cylinders heated from below has been 

analysed with a fully three-dimensional and time-dependent numerical scheme. 
Predictions of the onset of convective motion show good agreement with the 

results of linear stability theories, in particular the critical Rayleigh numbers (Re, J 
and the structure and stability of the first convective instability. 

The nonlinear numerical analysis of convection in rigid cylinders clearly shows 
that stable axisymmetric solutions are not only limited to flat cylindrical enclosures 
but are also further restricted to small Rayleigh numbers. The value of R for the 
transition from axisymmetric to non-axisymmetric convection is strongly influenced 
by nonlinear interactions. For the small Prandtl number 0.02 the nonlinear 
behaviour is more pronounced, and a relatively low critical Rayleigh number Re, 3D = 
2525 is found for the transition to the non-axisymmetric flow pattern at an aspect 
ratio a = 0.5. For P = 1 the transition occurs a t  a higher critical Rayleigh number, 

= 4100. It is interesting to note that both axisymmetric and non-axisymmetric 
solutions could be found for an intermediate Rayleigh number of 2800, depending on 
the initial conditions. No significant dependence on the Prandtl number is found for 
P 2 1,  in agreement with nonlinear calculations of Jones et al. (1976) and Clever & 
Busse (1981). 
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The transition from laminar to oscillatory convection was determined from 
nonlinear, time-dependent calculations for the Prandtl number 0.02. For the onset of 
time-dependent convection the ratio Rc,t/Rc,s = 2.0 was obtained for the aspect ratio 
a = 0.5 and Rc9t /Rc , s  = 4.1 for a = 1. For P = 6.7 and a = 1 steady convection was 
found within the whole investigated range up to R = 5 x lo4, i.e. it  can be assumed 
that R,,JR,,, > 13.8. The above result, i.e. that the critical Rayleigh number for the 
onset of time-dependent convection decreases strongly for small Prandtl numbers, is 
well known and was also found in the experiments of Krishnamurti (1973), who 
investigated the onset of unsteady Rayleigh-Be'nard convection in fluid layers of 
large horizontal extent. For liquid mercury with P = 0.025 Krishnamurti obtained 
the critical number Re, JR,,, = 1.4. The higher stability of laminar convection 
calculated in this work for the confined fluids can be attributed to the damping 
influence of the lateral wall. 

Since oscillatory convection must in general be avoided during crystal growth 
(Miiller 1988), the determination of oscillatory regimes and their dependence on the 
geometry, thermal boundary conditions, etc. is important for the optimization of 
various growth processes. As shown in $5, and in more detail by Miiller et al. (1984) 
and Neumann (1986), the results obtained for the idealized model presented in this 
study are in good agreement with those obtained from vertical crystal growth 
experiments as long as convection is controlled by destabilizing vertical temperature 
gradients. 
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